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Abstract 
   Luenberger observer is designed to estimate the states of the Bergman Minimal model 
of Glucose-insulin to continuously control the blood glucose level of Type-1 diabetic mellitus 
patient as close as basal value. The controller is designed by philosophy of nonlinear 
Backstepping method. Observer is designed by considering the linear model of the Bergman 
minimal model. MATLAB simulation shows the effectiveness of the observer in controlling 
blood glucose level of the realistic patient. 
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1.Introduction 

WHO reports shows that 1.5 million deaths caused by Diabetes in 2012. Additional 2.2 
million deaths caused by higher than optimal blood glucose. 43% of these 3.7million deaths occurs 
before the age of 70 years. Type-1 diabetes is caused due to lack of insulin producing cells in the body 
which results in hyperglycemia. Associated risk factors such as being overweigth or obese are 
increasing. Diabetes is an important cause of blindness, kidney failure, lower limb amputation and 
long term consequences that impact significantly on quality of life. Type-1 Diabetes cannot be 
prevented with current knowledge. External insulin infusion using insulin pump periodically is the 
only measure for the Type-1 diabetic patients for keeping blood glucose level to normal level.  

In the present study control strategy is proposed for maintaining the blood glucose level as 
close to normal level. Controller is maintaining the infusion rate of the insulin into the body so as to 
control the blood glucose level from reaching the dangerous level, while the observer helps in 
estimating the various states of the model which are impractical to measure or are costly.  
 
2. Controller 
 
2.1 Mathematical Model 

Bergman Minimal model is commonly referenced model in literature due to its simplicity and 
approximately give the dynamic response which close to the normal human body response. It consists 
of two sets of equations, first represent the glucose response and the second represents about the 
insulin dynamics in the normal human body. 
                                                      Ġ(t)= −𝑝ଵ[G(t)−𝐺௕]−Z(t)G(t)+D(t)      ……... (1a) 
                                                 Ż(t)= −𝑝ଶ Z(t)+ 𝑝ଷ [𝐼(t)− 𝐼௕]                …….…(1b) 
                                                 İ(t)= − η [𝐼(t)− 𝐼௕]+ ɣ[G(t)−h]ᵗ          ……….…(2)  
where, Ġ(t) is the glucose concentration in the blood plasma in (mg/dl), Ż(t) is the insulin’s effect on 
the net glucose disappearance,𝐺𝑏 is the basal pre-injection level of glucose in (mg/dl), 𝑝ଵ  is the 
insulin-independent rate constant of glucose uptake in muscles and liver in (1/min), 𝑝ଶis the rate for 
decrease in tissue glucose uptake ability in (1/min), 𝑝ଷ is the insulin-dependent increase in glucose up 
take ability in tissue per unit of insulin concentration above the basal level, İ(t) is the insulin 
concentration in plasma at time t in ( µ U/ml),𝐼𝑏 is the basal pre-injection level of insulin. Values for 
parameters will vary from person to person.  
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Ḋ(t) shows the rate at which glucose is absorbed to the blood from the intestine, following 
food intake, considered as disturbance in Type I diabetes mellitus patient and modeled as decaying 
exponential function as give below.  

                                                    Ḋ(t) = −B*D(t) , B>0                 ………(3)  
where, t is in (min) and 𝐷̇(t) is in (mg/dl/min).  
 
2.2 Equilibrium point 

The objective is to design the control system such that the system variables in (1)-(3) reach 
their equilibrium values (i.e., basal values in the present case). For convenience, system of equations 
introduced in (1)-(3) can be combined and rewritten in its deviation terms with origin as equilibrium 
point. For this we define  
 
                                               [𝑥₁ 𝑥₂ 𝑥₃ 𝑥₄]ᵀ=[𝑥ଵ଴𝑥ଶ଴𝑥ଷ଴𝑥ସ଴]ᵀ+[𝑥ଵௗ 𝑥ଶௗ 𝑥ଷௗ  𝑥ସௗ] ᵀ  ….  (4) 
 
where [𝑥ଵௗ  𝑥ଶௗ 𝑥ଷௗ 𝑥ସௗ]ᵀ are the deviated state about the equilibrium point [𝑥ଵ଴ 𝑥ଶ଴ 𝑥ଷ଴ 𝑥ସ଴]ᵀ of the 
system and 𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝑎𝑛𝑑 𝑥ସ  represent Ġ(t), Ż(t), İ(t) and Ḋ(t) respectively. Note that the term 
ɣ[G(t)−h]† (production of insulin internally) in (2) is removed as it does not exist diabetic patients, 
u(t) defines the insulin infusion rate and replaces the normal insulin regulation of the body which acts 
as the control variable. The exogenous infusion of glucose is considered as an additional state variable 
𝑥₄. The equilibrium points obtained as  
                                                           [𝑥ଵ଴𝑥ଶ଴𝑥ଷ଴𝑥ସ଴]ᵀ =[𝐺𝑏 0 𝐼𝑏 0]ᵀ  
Hence, 
                                                        𝑥ଵ̇ௗ= −𝑝ଵ*𝑥ଵௗ−𝑥ଶௗ *(𝑥ଵௗ + 𝐺𝑏) + 𝑥ସௗ        ….(5) 
                                                        𝑥 ̇ଶௗ= −𝑝ଶ*𝑥ଶௗ+ 𝑝ଷ∗𝑥ଷௗ                               …..(6) 
                                                        𝑥 ̇ଷௗ= −η𝑥ଷௗ+U                                             ….(7) 
                                                        𝑥 ̇ସௗ= −B*𝑥ସௗ                                                ….(8) 
 
2.3 Design 

 The mathematical model described is divided in three loop structure as follows, 
                               𝑥ଵ̇ௗ = −𝑝ଵ𝑥ଵௗ−(𝑥ଵௗ+𝐺௕)𝑥ଶௗ+𝑥ସௗ                   ..….… Loop I  
                               𝑥 ̇ଶௗ  = −𝑝ଶx2d+ 𝑝ଷx3d                                         ……... Loop II 
                               𝑥 ̇ଷௗ = −ɳx3d+u(t)                                               …..… Loop III 
 

The disturbance due to food intake is the internal dynamics for the system and it can be observed that 
it is a stable internal dynamics. 
In Loop I x2d is considered as input and objective set is to design trajectory of x2d so that x1d→ x*1d = 0 
and for control design purpose x2d acting like input is termed as x*2d .Defining error between 
instantaneous blood glucose x1d and desired value of blood glucose x*1d = 0 (implies the fact that˙ x*1d 
=0)as 

                                  e1= x1d − x*1d                           ……..…(9) 
 The objective in designing x*2d is to make error e1 reach zero as early as possible. 
 Imposing first-order error dynamics gives 

                                 𝑒ଵ̇ + k 1 e1= 0                             ……..(10) 
where k1> 0 is the design parameter. After appropriate substitution and algebraic rearrangement we 
are able to compute x*2d required to meet the objective set for Loop II i.e. to force blood glucose 
concentration to reach its basal value.    

                                 x*2d=  
[(ି ௣భା ௞ଵ) ௫భ೏ା ௫ర೏]

(௫భ೏ା ீ್)
             ……(11) 

Once we know x*2dwhich will make sure that glucose level in blood stream reach basal value, our 
next objective is to make sure x2dfollows x*2dso as to achieve the objective of Loop I. This is achieved 
in similar manner by consideringx3d in Loop II as input and naming it as x*3dand objective here is to 
force x2d to follow x*2d. Defining error between x2dand x*2das 

                                   e2=x2d−x*2d                                 ….(12) 
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The objective in designing x*3d is to make error e2 reach zero as early as possible. Imposing first-order 
error dynamics gives 

                 𝑒ଵ̇+k2*e2=0                                               …(13) 
where k2> 0 is the design parameter. After appropriate substitution and algebraic rearrangement we 
are able to compute x*3drequired to meet the objective set for Loop II i.e. 

              x*3d=1/(p3[p2x2d–k2(x2d–x*2d)])                …(14) 
We have assumed that x*2dis slow varying variable and for small interval of computation of controller 
it is considered constant ( quasi-steady assumption ) i.e. ˙ x*2d= 0 for that duration. Now we know 
how x2dshould follow x*2dso as to achieve the objective set for Loop II, our next objective is to make 
sure x3dfollows x*3dso as to achieve the objective of Loop II. This is achieved in similar manner by 
designing controller for Loop III , which contain our actual controller i.e. rate of insulin to be injected 
into patients blood. Defining error between x3d and x*3d as 

             e3 =x3d–x*3d                                              …..(15) 
The objective in designing ud is to make error e3 reach zero as early as possible. Imposing first-order 
error dynamics gives 

              𝑒ଵ̇+ k3* e2 = 0                                            …(16) 
where k3> is the design parameter. After appropriate substitution and algebraic rearrangement we are 
able to compute 𝑢ௗ required to meet the objective set for Loop III i.e. 

               ud=ŋ x3d− k3(x3d – x*3d)                            …(17) 
Similarly, we have assumed that x3d is slow varying variable and for small interval of 

computation of controller it is considered constant( quasi-steady assumption ) i.e. ˙ x*3d= 0 for that 
duration. Now we have ud  i.e. rate of insulin to be given to patient is available to make sure that 
objective set for Loop III is achieved, which ultimately will help to bring down blood glucose level of 
patient from its initial value to the required basal value. 

 
3. Observer 

Luenberger Observer estimates the unknown state variable of the system (in this case patient). 
Continuous monitoring of the patient parameters is not easily feasible nor economical, so by 
monitoring the blood glucose level we can estimate the other states by using Observer. This will help 
in controlling the parameters in the controller and helps in infusion of external insulin. Luenberger 
observer is used in the linear system to estimates the other state variables using the error between the 
actual state and the estimated state from the observer. Here the non-linear model has been linearized 
by the standard method of linearization  

                                            
Patient Dynamics, 
                 x(t) = A*x(t)+B*u(t)                                      ……….(18) 
                 y(t) = C*x(t)                                                    ………(19) 
Observer  
                 𝑥ො(t) = A*𝑥ො(t) + B*u(t) + L (𝑦ො(t)-y(t))               ..……(20) 
                 𝑦ො(t) = C*𝑥ො(t)                                                    ………(21) 
where, L is observer gain. 
In this case, after linearizing the model we get the following matrices, 
 

            A = 

−𝑝ଵ

0
0
0

−𝐺௕

−𝑝ଶ

0
0

0
𝑝ଷ
−ɳ
0

1
0
0

−𝐵
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            B=[ 0 ; 0 ; 1 ; 0 ] 
 
            C=[ 1 0 0 0 ] 
 
            D=0  
By mathematical substitution and solving the equations we get Observer Gain matrix as, 
         L=[ 0.6673 ;  - 0.00019 ; 15.6542 ; 0.0110 ] 
This value of L matrix helps in the estimating sates of the system approximately. 
 
4. Conclusion 

As we can see from fig 1.2, under same disturbance the blood glucose trajectory is different 
for different patients i.e. 𝐺௕. For diabetic type 1 diabetic (blue graph) patient without any external 
insulin the blood glucose level rises to a dangerous level which may have high risk of death or 
nervous damage which is normally (hyperglycemia) the case with type-1 diabetic patient. The rest of 
the trajectories (green, red, cyan) shows that the blood glucose level settle down to the respective 
basal values by taking proper amount of external insulin which is shown in fig 1.3. In these fig the 
body insulin level remains unaffected in the body of untreated patient while that of treated patients 
that dynamically changes. Fig 1.4 shows the insulin infusion rate into the body which is dependent on 
the amount of glucose  present in the blood. From fig 1.5 we can see the effectiveness of the controller 
as it controls the blood glucose level from different initial points. Fig 1.6 shows the output of the 
observer i.e, the estimated values of the active plasma insulin which is close to the actual plasma 
insulin values. Fig1.7 shows the estimated values of blood insulin level by observer which oscillates 
for some initial time and then follow the actual blood insulin values. This oscillation is due to high 
error between the actual and the observer initial state values.Fig1.8 show the actual blood glucose 
level settles to the basal value which is being controlled using Luenberger Observer.

To monitor the actual value of plasma insulin its very complex and costly so by using the 
observer we can estimate the values very close to the actual values. Moreover it can be observed that 
by using observer the transient response of the blood glucose concentration has improved while there 
is no change in the settling time of the blood glucose concentration.  
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TABLE-1 
 
Parameter Nominal 

Values 
Min 
Values 

Max 
Values 

𝑝ଵ  0.028 0 0.028 

𝑝ଶ 0.0142 0.01 0.02 

𝑝ଷ 0.0000156 0.000001 0.00002 

       ɳ 0.2814 0.12 0.3 

       B 0.05 0.01 0.1 

 
 
 
TABLE-2 
 

𝑘ଵ 0.011764 
𝑘ଶ 0.05 
𝑘ଷ 0.4 

 

Figure 

 
Fig 1.2 Blood Glucose Concentration for 
different 𝐺௕ . 

   
Fig 1.3 Blood Insulin Trajectory for different 
𝐺௕. 

                Fig 1.4 Insulin Infusion Rate 
 

   Fig 1.5 Different blood glucose initial values. 
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Fig 1.6 Actual state Vs. Observed state of 
plasma insulin concentration.  
 

 
Fig 1.8 Blood Glucose concentration after 
implementing observer. 
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    Fig 1.7 Actual State Vs. Observed State of       
Blood insulin concentration. 
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